RISKS POSED BY BRINES CONTAINING DISSOLVED CO₂

Ron Falta, Sally Benson, and Larry Murdoch Clemson University and Stanford University

March 23, 2010

EPA- Science to Achieve Results (STAR) project (3 year)

- Ron Falta (PI): multiphase flow, subsurface remediation, modeling
- Sally Benson (Co-PI): geologic CO₂ sequestration, laboratory experiments of CO₂ relative permeability
- Larry Murdoch (Co-PI): hydrogeology, subsurface remediation, modeling
- Graduate Students: Miles Atkinson, Kirk Ellison, Chris Patterson, Catherine Ruprecht at Clemson; MS student at Stanford
- Barbara Klieforth: EPA Project Officer

CO₂ Density and Solubility with Depth

Calculated using the Lawrence Berkeley Lab TOUGH2-ECO2N code assuming 35° C and 10,000 mg/l NaCl

The high CO₂ solubility is significant

- At 3000 ft depth, we get
 ~50 g/l (50 times more
 CO₂ than beer!)
- At a CO₂ phase saturation of 7%, the amount of CO₂ that is dissolved equals the amount in the supercritical CO₂ phase
- When CO₂ dissolves, the aqueous phase becomes more dense (about 1% here)

Calculated using TOUGH2-ECO2N

Geologic CO₂ Storage Security

- Stratigraphic trapping supercritical CO₂ trapped by confining layers
- Residual CO₂ trapping –
 supercritical CO₂ is locally trapped by capillary forces
- Solubility trapping CO₂
 dissolves in pore water (up
 to 60 g/l)
- Mineral trapping CO₂
 reacts to form solid minerals
 (carbonates)

The Dissolved CO₂ is Secure – Or Is It?

- Density increase favors downward flow of CO₂ saturated brine
- Upward flow would require a caprock defect, and an upward hydraulic gradient
- However, if a saturated CO₂ brine moved upward, the CO₂ would come out of solution (exsolve), leading to a potentially mobile gas phase

Darcy's Law for buoyancy flow

$$V = -\frac{k}{\mu}(\bar{\rho} - \rho_{\infty})g$$

Darcy's Law for groundwater flow

$$V = -K \frac{\partial h}{\partial z} = -\frac{k \rho_{\infty} g}{\mu} \frac{\partial h}{\partial z}$$

Critical upward gradient to mobilize CO₂ saturated brine

$$\left| \frac{\partial h}{\partial z} \right| = \frac{(\overline{\rho} - \rho_{\infty})}{\rho_{\infty}}$$

TOUGH2-ECO2N simulation: CO₂ saturated brine moves up an open fault to a shallower aquifer

- Confined saline formation contains 50.7 g/I CO₂
- Connected to fresh water aquifer by fault, k=10⁻¹¹ m²
- System initially in static equilibrium
- Reduce hydraulic head at top of upper aquifer by 30 m.

CO_2 gas saturation after 100 years, low gas residual trapping ($S_{gr} = 5\%$)

Mobile gas phase moves to top of aquifer

Large zone of trapped gas phase CO₂ is formed

Dense brine with dissolved CO₂ moves away from fault laterally

CO_2 gas saturation after 100 years, high gas residual trapping ($S_{gr} = 20\%$)

Small zone of trapped gas phase CO₂ is formed. Gas never achieves high mobility

Dense brine with dissolved CO₂ moves away from fault laterally

Project Objectives

- Develop pore-level understanding of the gas exsolution process (experimental, numerical)
- Determine mobility of exsolved CO₂ (experimental)
- Establish relative permeability characteristics of exsolved CO₂ (experimental, numerical)
- Evaluate local and regional scale hydrogeologic characteristics that could lead to unwanted dissolved CO₂ transport (numerical)
- Evaluate alternative CO₂ disposal schemes for reducing risk
- Determine what methods of remediation would be most effective if CO₂ contamination is detected.

Laboratory experiments – Benson Lab, Stanford

CO₂ saturated water pump

- High pressure core flooding apparatus; can inject CO₂, brine, or both
- Medical X-Ray
 Computed
 Tomography (CT) to image gas saturation
- Precision pumps, flow meters, pressure transducers

Initial CO₂ exsolution experiments

- Inject CO₂
 saturated brine
 at 1800 psi into
 brine filled
 sandstone core
- Close valves, then drop core pressure to 1400, and then 1000 psi

scan 1 1400 psi

scan 2 1036 psi

Initial CO₂ exsolution experiments

Pore-scale simulations

- Use Comsol Multiphysics PDE solver to simulate exsolution and bubble behavior at pore level
- Full fluid mechanics and micro-scale mass transfer

Figure 10. Pore-scale simulation of gravitational coalescence of a rising bubble of NAPL (blue) with a NAPL-water (red) interface using a level-set technique. Proposed simulations would use modified geometry and fluid properties to represent CO₂ in water-filled pores.

CO2 phase relative permeability

- Evaluate the CO₂ residual saturation (mobility) following exsolution
- Anticipate that behavior may be different from CO₂ phase injection experiments

CO₂ phase injection

CO₂ exsolution from brine

Regional-scale variable density flow modeling

- Large scale models
 of current or
 proposed CO₂
 injection sites
- single-phase water flow with brine/ CO₂ density effects
- MODFLOW-SEAWAT or TOUGH2-ECO2N

Multiphase simulation of CO₂ injection

- Multiphase flow simulations with TOUGH2-ECO2N or possibly CMG GEM code
- Study supercritical CO₂ injection followed by dissolution and brine movement
- Use new relative permeability functions/data from experiments
- Also evaluate direct injection of dissolved CO₂

CO₂ remediation designs

- Use the multiphase flow CO₂
 simulations as initial conditions
- Use the TOUGH2-ECO2N or CMG GEMS programs
- Evaluate what actions would reduce or eliminate the risk posed by CO₂ that escaped from the original storage formation

Summary

- Three year project that focuses on dissolved CO₂ that comes out of solution upon depressurization
- Laboratory, pore-scale and field scale modeling
- Quantification of exsolved CO₂ mobility and relative permeability
- Development of strategies for reducing risk and remediation